On the Weis-Fogh mechanism of lift generation

Author:

Lighthill M. J.

Abstract

Weis-Fogh (1973) proposed a new mechanism of lift generation of fundamental interest. Surprisingly, it could work even in inviscid two-dimensional motions starting from rest, when Kelvin's theorem states that the total circulation round a body must vanish, but does not exclude the possibility that if the body breaks into two pieces then there may be equal and opposite circulations round them, each suitable for generating the lift required in the pieces’ subsequent motions! The ‘fling’ of two insect wings of chord c (figure 1) turning with angular velocity Ω generates irrotational motions associated with the sucking of air into the opening gap which are calculated in § 2 as involving circulations −0·69Ωc2 and + 0.69Ωc2 around the wings when their trailing edges, which are stagnation points of those irrotational motions, break apart (position (f)). Viscous modifications to this irrotational flow pattern by shedding of vorticity at the boundary generate (§ 3) a leading-edge separation bubble, and tend to increase slightly the total bound vorticity. Its role in a three-dimensional picture of the Weis-Fogh mechanism of lift generation, involving formation of trailing vortices at the wing tips, and including the case of a hovering insect like Encarsia formosa moving those tips in circular paths, is investigated in § 4. The paper ends with the comment that the far flow field of such very small hovering insects should take the form of the exact solution (Landau 1944; Squire 1951) of the Navier-Stokes equations for the effect of a concentrated force (the weight mg of the animal) acting on a fluid of kinematic viscosity v and density p, whenever the ratio mg/pv2 is small enough for that jet-type induced motion to be stable.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference6 articles.

1. Prandtl, L. 1918 Tragflügeltheorie.Nachr. Ges. Wiss. Göttingen,pp.107,451.

2. Lighthill, M. J. 1963 In Laminar Boundary Layers (ed. L. Rosenhead ), chap. 2, $1.7.Oxford University Press.

3. Weis-Fogh, T. 1973 J. Exp. Biol. (to appear).

4. Landau, L. D. 1944 Dokl. Akad. Nauk. SSSR,43,286.

5. Wagner, H. 1925 Z. angew. Math. Mech. 5,17.

Cited by 276 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3