The role of Toll-like receptors and MyD88 in innate immune responses

Author:

Akira Shizuo1,Hoshino Katsuaki2,Kaisho Tsuneyasu2

Affiliation:

1. Department of Host Defense, Research Institute for Microbial Diseases, Osaka University; CREST of Japan Science and Technology Corporation, Osaka, Japan, -u.ac.jp

2. Department of Host Defense, Research Institute for Microbial Diseases, Osaka University; CREST of Japan Science and Technology Corporation, Osaka, Japan

Abstract

Toll-like receptors (TLRs) are phylogenetically conserved receptors that recognize pathogen associated molecular patterns (PAMPS). We previously generated mice lacking TLR2 and TLR4 and showed the differential role of TLR2 and TLR4 in microbial recognition. TLR4 functions as the transmembrane component of the lipopolysaccharide (LPS) receptor, while TLR2 recognizes peptidoglycan from Gram-positive bacteria and lipoprotein. We also generated mice lacking MyD88, an adaptor involved in IL-1R/TLR signalings. The responses to a variety of bacterial components were completely abrogated in MyD88-deficient cells. However, unlike the signaling mediated by other bacterial components such as lipoprotein and bacterial DNA, activation of NF-κB and MAP kinases was induced in response to LPS even in the absence of MyD88, which indicates the existence of a MyD88-independent pathway. We have recently found that the MyD88-independent pathway is involved in LPS-induced maturation of dendritic cells (DCs).

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3