Author:
Cassiano Larissa Marcely Gomes,Oliveira Marina da Silva,de Queiroz Karina Barbosa,Amancio Alice Muglia Thomaz da Silva,Salim Anna Christina de Matos,Fernandes Gabriel da Rocha,Carneiro Cláudia Martins,Coimbra Roney Santos
Abstract
BackgroundThe interplay between bacterial virulence factors and the host innate immune response in pneumococcal meningitis (PM) can result in uncontrolled neuroinflammation, which is known to induce apoptotic death of progenitor cells and post-mitotic neurons in the hippocampal dentate gyrus, resulting in cognitive impairment. Vitamin B12 attenuates hippocampal damage and reduces the expression of some key inflammatory genes in PM, by acting as an epidrug that promotes DNA methylation, with increased production of S-adenosyl-methionine, the universal donor of methyl.Material and methodsEleven-day-old rats were infected with S. pneumoniae via intracisternal injection and then administered either vitamin B12 or a placebo. After 24 hours of infection, the animals were euthanized, and apoptosis in the hippocampal dentate gyrus, microglia activation, and the inflammatory infiltrate were quantified in one brain hemisphere. The other hemisphere was used for RNA-Seq and RT-qPCR analysis.ResultsIn this study, adjuvant therapy with B12 was found to modulate the hippocampal transcriptional signature induced by PM in infant rats, mitigating the effects of the disease in canonical pathways related to the recognition of pathogens by immune cells, signaling via NF-kB, production of pro-inflammatory cytokines, migration of peripheral leukocytes into the central nervous system, and production of reactive species. Phenotypic analysis revealed that B12 effectively inhibited microglia activation in the hippocampus and reduced the inflammatory infiltrate in the central nervous system of the infected animals. These pleiotropic transcriptional effects of B12 that lead to neuroprotection are partly regulated by alterations in histone methylation markings. No adverse effects of B12 were predicted or observed, reinforcing the well-established safety profile of this epidrug.ConclusionB12 effectively mitigates the impact of PM on pivotal neuroinflammatory pathways. This leads to reduced microglia activation and inflammatory infiltrate within the central nervous system, resulting in the attenuation of hippocampal damage. The anti-inflammatory and neuroprotective effects of B12 involve the modulation of histone markings in hippocampal neural cells.
Subject
Immunology,Immunology and Allergy