Uncovering the neuroprotective effect of vitamin B12 in pneumococcal meningitis: insights into its pleiotropic mode of action at the transcriptional level

Author:

Cassiano Larissa Marcely Gomes,Oliveira Marina da Silva,de Queiroz Karina Barbosa,Amancio Alice Muglia Thomaz da Silva,Salim Anna Christina de Matos,Fernandes Gabriel da Rocha,Carneiro Cláudia Martins,Coimbra Roney Santos

Abstract

BackgroundThe interplay between bacterial virulence factors and the host innate immune response in pneumococcal meningitis (PM) can result in uncontrolled neuroinflammation, which is known to induce apoptotic death of progenitor cells and post-mitotic neurons in the hippocampal dentate gyrus, resulting in cognitive impairment. Vitamin B12 attenuates hippocampal damage and reduces the expression of some key inflammatory genes in PM, by acting as an epidrug that promotes DNA methylation, with increased production of S-adenosyl-methionine, the universal donor of methyl.Material and methodsEleven-day-old rats were infected with S. pneumoniae via intracisternal injection and then administered either vitamin B12 or a placebo. After 24 hours of infection, the animals were euthanized, and apoptosis in the hippocampal dentate gyrus, microglia activation, and the inflammatory infiltrate were quantified in one brain hemisphere. The other hemisphere was used for RNA-Seq and RT-qPCR analysis.ResultsIn this study, adjuvant therapy with B12 was found to modulate the hippocampal transcriptional signature induced by PM in infant rats, mitigating the effects of the disease in canonical pathways related to the recognition of pathogens by immune cells, signaling via NF-kB, production of pro-inflammatory cytokines, migration of peripheral leukocytes into the central nervous system, and production of reactive species. Phenotypic analysis revealed that B12 effectively inhibited microglia activation in the hippocampus and reduced the inflammatory infiltrate in the central nervous system of the infected animals. These pleiotropic transcriptional effects of B12 that lead to neuroprotection are partly regulated by alterations in histone methylation markings. No adverse effects of B12 were predicted or observed, reinforcing the well-established safety profile of this epidrug.ConclusionB12 effectively mitigates the impact of PM on pivotal neuroinflammatory pathways. This leads to reduced microglia activation and inflammatory infiltrate within the central nervous system, resulting in the attenuation of hippocampal damage. The anti-inflammatory and neuroprotective effects of B12 involve the modulation of histone markings in hippocampal neural cells.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3