Late-Holocene cliff-top blowout activation and evolution in the Cooloola Sand Mass, south-east Queensland, Australia

Author:

Ellerton Daniel1ORCID,Rittenour Tammy2,Miot da Silva Graziela3,Gontz Allen4,Shulmeister James1,Hesp Patrick3,Santini Talitha C15ORCID,Welsh Kevin J1

Affiliation:

1. School of Earth and Environmental Sciences, The University of Queensland, Australia

2. Utah State University Luminescence Laboratory, Utah State University, USA

3. College of Science and Engineering, Flinders University, Australia

4. Department of Geological Sciences, San Diego State University, USA

5. School of Agriculture and Environment, University of Western Australia, Australia

Abstract

Cliff-top dunes are a locally important geomorphic features of sedimentary coasts. They are traditionally interpreted as being sourced by (or with) sand derived from the beach below the cliff. This paper presents the results of a stratigraphic and geochronological study of Carlo Sand Blow, a coastal blowout that has developed on top of a high sandy cliff in the Cooloola Sand Mass, south-east Queensland. We use a combination of sedimentological, pedological and geophysical techniques along with optically stimulated luminescence dating to determine the depositional history and evolution of the blowout. We demonstrate that the blowout is dominantly nourished by sand eroded from its floor rather than the adjacent beach. The original dune surface dates to the first half of the last glacial period (c. 40–70 ka) and this dune was deflated in the late-Holocene. Dune activity is directly associated with cliff undercutting because of coastal retreat in the late-Holocene, but coastal erosion on its own is not capable of maintaining aeolian activity. Blowout activity occurred between 2.6 and 2.3 ka and again at 0.3 ka with aeolian sand burying palaeosols. Both soil surfaces contained charcoal and tree stumps in growth position and our study suggests that fire is the immediate trigger for blowout reactivation. It is likely that these fires were anthropogenic in origin, because the site is somewhat protected from natural fire and the ages coincide with intensification of human use of coastal sites in the area.

Funder

Australian Research Council

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3