Parabolic dune distribution, morphology and activity during the last 20 000 years: A global overview

Author:

Vimpere Lucas1ORCID

Affiliation:

1. Department of Earth Sciences University of Geneva Geneva Switzerland

Abstract

AbstractParabolic dunes form and migrate in almost every climate and geographic zones of the world, ranging from the tropical coastlines to the arid continental deserts. Despite their extensive distribution and their importance within the aeolian sediment landscape, the understanding of their morphological development, activity and link with climates remains somewhat limited to local or regional scales. A good understanding of the present climate conditions under which parabolic dunes are formed and/or reactivated would be significantly helpful to constrain past climate models. Similarly, an improved knowledge of parabolic dunes behaviour during past climatic episodes would provide some valuable long‐term data to better predict their future activity. This review first aims at providing a non‐exhaustive global database on parabolic dune morphology and the present wind regimes with which they are associated. To do so, the morphology of 750 dunes distributed worldwide was first analysed using a high‐resolution global digital elevation model, suggesting an intrinsic relationship between the different measured morphoparameters. The analysis of the associated local wind regimes shows that parabolic dunes develop under strong unidirectional winds, which are more conspicuous in coastal than continental environments. Dunes of different ages are globally aligned with present prevailing winds, which suggests a prevalent control of long‐term global atmospheric circulation on dune orientations. Finally, this study explores the link between parabolic dune activity and climates over the past 20 000 years by reviewing ages from the literature and combining them with the ones compiled in the INQUA Dunes Atlas Chronologic Database. Overall, it appears that changes towards drier conditions have triggered dunes migration during both warm and cold periods of the Last Glacial Maximum, Holocene Climate Optimum, Roman Climate Optimum, Medieval Climate Optimum and Little Ice Age. The present day aeolian activity is predominantly linked with deteriorating environmental conditions caused by human disturbances.

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3