Annual to millennial record of sediment delivery to US Virgin Island coastal environments

Author:

Brooks Gregg R1,Larson Rebekka A12,Devine Barry3,Schwing Patrick T2

Affiliation:

1. Marine Science Department, Eckerd College, USA

2. College of Marine Science, University of South Florida, USA

3. Tropical Ecosystem Consulting, USA

Abstract

Over 100 sediment cores were collected from US Virgin Island coastal marine and salt pond environments to document the record of sediment delivery to the coastal system on annual to millennial time scales, and the extent to which human activities have influenced sedimentation patterns. Cores were analyzed for sedimentology, geochronology (210Pb, 137Cs, 7Be and 14C), and high-resolution elemental composition (scanning x-ray fluorescence (XRF) and laser ablation inductively coupled mass spectrometry (LA–ICP–MS)). The centennial–millennial record reveals the natural transition from terrestrial to marine ~6–4 kya in response to the Holocene sea-level rise. Coastal salt pond cores record initial pond development as coral growth between island headlands cut off and isolated existing marine embayments ~2 kya. The decadal–centennial record is dominated by human activities, primarily road construction, manifested as a ~10× increase in sediment accumulation rate where development is heavy, a ~2.5× increase where development is moderate, and no detectable increase in undeveloped areas. Annual millimeter- to centimeter-scale laminae in salt pond cores represent individual depositional ‘events’. Light-colored, Ca- and Sr-rich sands represent marine overwash deposits that in some cases can be tied to tropical cyclones. Dark-colored Al-, Fe-, Ti-, Si-rich sandy muds represent island runoff when rainfall rates exceed a threshold of ~1.2 cm/day. Organic-rich layers represent microbial mat growth between depositional ‘events’. Marine overwash and rainfall/runoff layers fluctuate on an annual–decadal scale during the historical period, but show much more variability over the previous ~1400 years, suggesting sediment source(s), depositional processes, and/or driving mechanisms have not remained constant during at least the late Holocene.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3