Rates and processes of aeolian soil erosion in West Greenland

Author:

Heindel Ruth C1,Culler Lauren E23,Virginia Ross A23

Affiliation:

1. Department of Earth Sciences, Dartmouth College, USA

2. Institute of Arctic Studies, Dartmouth College, USA

3. Environmental Studies Program, Dartmouth College, USA

Abstract

In arid landscapes across the globe, aeolian processes are key drivers of landscape change, but arid Arctic regions are often overlooked. In the Kangerlussuaq region of West Greenland, strong katabatic winds have removed discrete patches of soil and vegetation, exposing unproductive glacial till and bedrock. Although lake-sediment records suggest that landscape destabilization began approximately 1000 years ago, the upland soil erosion has never been directly dated. We use a novel application of lichenometry to estimate the rates and timing of soil erosion. We show that the formation of deflation patches occurred approximately 800–230 years ago, in general agreement with lake-sediment records. In West Greenland, the ‘Little Ice Age’ (AD 1350–1880) was characterized by a cold and arid climate, conditions that increased susceptibility to erosion. On average, deflation patches are expanding at a rate of 2.5 cm yr−1, and variation in the rate of patch expansion cannot be explained by proximity to the Greenland Ice Sheet (GrIS), slope, aspect, elevation, or patch size. An erosional threshold exists in this aeolian system, with climate conditions necessary for patch formation likely harsher than those necessary for continued patch expansion, a result that has implications for land management in arid regions. Currently, deflation patches are expanding throughout the study region and are forming in areas close to the GrIS, but future deflation rates are dependent on projected climate and potential land-use changes. Our results stress the importance of aeolian processes in arid polar landscapes such as Kangerlussuaq, and demonstrate the use of aeolian landforms in paleoclimate reconstructions and predicting future landscape change.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3