Rapid neoglaciation on Ellesmere Island promoted by enhanced summer snowfall in a transient climate model simulation of the middle-late-Holocene

Author:

Vavrus Stephen J1ORCID,He Feng1,Kutzbach John E1,Ruddiman William F2

Affiliation:

1. Nelson Institute Center for Climatic Research, University of Wisconsin-Madison, USA

2. Department of Environmental Sciences, University of Virginia, USA

Abstract

Arctic neoglaciation following the Holocene Thermal Maximum is an important feature of late-Holocene climate. We investigated this phenomenon using a transient 6000-year simulation with the CESM-CAM5 climate model driven by orbital forcing, greenhouse gas concentrations, and a land use reconstruction. During the first three millennia analyzed here (6–3 ka), mean Arctic snow depth increases, despite enhanced greenhouse forcing. Superimposed on this secular trend is a very abrupt increase in snow depth between 5 and 4.9 ka on Ellesmere Island and the Greenland coasts, in rough agreement with the timing of observed neoglaciation in the region. This transition is especially extreme on Ellesmere Island, where end-of-summer snow coverage jumps from nearly 0 to virtually 100% in 1 year, and snow depth increases to the model’s imposed maximum within 15 years. This climatic shift involves more than the Milankovitch-based expectation of cooler summers causing less snow melt. Coincident with the onset of the cold regime are two consecutive summers with heavy snowfall on Ellesmere Island that help to short-circuit the normal seasonal melt cycle. These heavy snow seasons are caused by synoptic-scale, cyclonic circulation anomalies over the Arctic Ocean and Canadian Archipelago, including an extremely positive phase of the Arctic Oscillation. Our study reveals that a climate model can produce sudden climatic transitions in this region prone to glacial inception and exceptional variability, due to a dynamic mechanism (more summer snowfall induced by an extreme circulation anomaly) that augments the traditional Milankovitch thermodynamic explanation of orbitally induced glacier development.

Funder

Division of Atmospheric and Geospace Sciences

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3