Long-Term Variations of Caloric Insolation Resulting from the Earth's Orbital Elements

Author:

Berger André L.

Abstract

A contribution to a global a priori model of climatic changes for the Quaternary Ice Age is tentatively proposed. Special emphases are put on the astronomical problem and on the insolation available in the assumption of a perfectly transparent atmosphere. It is shown that for these two steps an accurate solution can be obtained, limiting the cumulative effect of computational approximation and allowing input to a climatological model to be of real value. For the earth's orbital elements, the proposed solution includes terms dependent to the second degree on disturbing masses, to third degree on planetary eccentricities and inclinations and, for the obliquity and the annual general precession in longitude, also to the second degree on earth's eccentricity. Improvements introduced by this solution upon the insolation computed through the Milankovitch series are deduced from the differences between Vernekar's results and present ones. The relative agreement between results clearly shows that the new astronomical solution is probably close to the ideal one from a paleoclimatological point of view.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

Reference57 articles.

1. The astronomical theory of paleoclimates: A cascade of accuracy;Berger;Proceedings of the WMO-IAMAP Symposium on Long-Term Climatic Fluctuations,1975

2. A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System

3. In defense of the astronomical theory of glaciation;Broecker;Meteorological Monographs,1968

4. A Solution for the Northern Hemisphere Climatic Zonation During a Glacial Maximum

5. Long-period global variations of incoming solar radiation;Vernekar;Meteorological Monographs,1972

Cited by 2090 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3