Mapping brand similarities: Comparing consumer online comments versus survey data

Author:

Vriens Marco1,Chen Song1,Vidden Chad1

Affiliation:

1. University of Wisconsin–La Crosse, USA

Abstract

Online consumer behavior has become a valuable and viable source of consumer insights. Consumer comments in online forums, or discussion groups, have proven useful as a source to extract brand similarity data from. Apart from the cost and speed advantages, such data can be captured easily over different time periods. Both online consumer-generated data (CGD) and surveys have their pros and cons. To date, little is known as to how these two data sources compare in terms of brand insights. In this study, we discuss the results from analyzing survey and consumer-generated online data pertaining to the U.S. skincare market. Our study included 57 brands, and we used multidimensional scaling (MDS), t-stochastic neighbor embedding (t-SNE; an alternative to MDS), hierarchical clustering, and additive similarity trees (an extension of hierarchical clustering) to analyze the data. We show that the outcomes vary between CGD and surveys. As an additional insight, we show that, rather than the spatial scaling methods, additive trees result in a much better fit of brand similarity data in cases where we have many brands.

Publisher

SAGE Publications

Subject

Marketing,Economics and Econometrics,Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3