Quantification of trunnion damage in a series of intact total hip arthroplasty femoral stems previously identified to be at risk of catastrophic failure

Author:

Lanting Brent A1,Sogbein Olawale A1ORCID,MacDonald Steven J1,Shah Nirmit2ORCID,Kok Tea-Lyn2,Willing Ryan2,Teeter Matthew G12

Affiliation:

1. Department of Surgery, London Health Sciences Centre – University Hospital, Division of Orthopaedic Surgery, ON, Canada

2. Surgical Innovation Program, Lawson Health Research Institute, London, ON, Canada

Abstract

Background: Corrosion at the head-neck junction of femoral stems is a rare complication of total hip arthroplasty (THA) with manifestations ranging from subclinical wear to failure. Prior studies have identified a single femoral component design with an increased propensity for catastrophic trunnion failure. The purpose of the present study was to quantify trunnion damage of this femoral component retrieved from patients undergoing revision THA for non-trunnionosis indications. Methods: 24 femoral components from a single manufacturer were identified for study inclusion. Each prosthesis underwent stereomicroscopic inspection. Corrosion and fretting scores were assigned per the Goldberg criteria to quadrants of the trunnion. Material loss was calculated based on cone angles across trunnion quadrants. This was carried out using a coordinate measuring machine that digitised each trunnion surface. Stems were compared to a series of femoral stems with the same trunnion design. Results: 20 of the 24 (83%) trunnions demonstrated corrosion, all 24 trunnions demonstrated fretting. Corrosion scores did not statistically differ with respect to trunnion zone ( p = 0.53), while fretting scores were higher in the inferior compared to the superior zones ( p  < 0.001). There was no significant difference in cone angles assessing material loss between stems ( p = 0.25). Conclusions: Evidence of trunnion damage was observed in each stem retrieved for non-trunnionosis revision. Fretting occurred more frequently about the inferior quadrants. However, digitised trunnion shapes were similar between compared stems exhibiting no material loss. Therefore, it is possible that previous reports of trunnion failures for this implant are not a systemic issue, and that further investigation is required.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3