Metabolic underpinnings of activated and deactivated cortical areas in human brain

Author:

Koush Yury1ORCID,de Graaf Robin A12,Kupers Ron3,Dricot Laurence4,Ptito Maurice5,Behar Kevin L16,Rothman Douglas L12,Hyder Fahmeed12

Affiliation:

1. Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA

2. Department of Biomedical Engineering, Yale University, New Haven, CT, USA

3. BRAINlab, Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark

4. Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Belgium

5. School of Optometry, Université de Montreal, Montreal, Canada

6. Department of Psychiatry, Yale University, New Haven, CT, USA

Abstract

Neuroimaging with functional MRI (fMRI) identifies activated and deactivated brain regions in task-based paradigms. These patterns of (de)activation are altered in diseases, motivating research to understand their underlying biochemical/biophysical mechanisms. Essentially, it remains unknown how aerobic metabolism of glucose to lactate (aerobic glycolysis) and excitatory-inhibitory balance of glutamatergic and GABAergic neuronal activities vary in these areas. In healthy volunteers, we investigated metabolic distinctions of activating visual cortex (VC, a task-positive area) using a visual task and deactivating posterior cingulate cortex (PCC, a task-negative area) using a cognitive task. We used fMRI-guided J-edited functional MRS (fMRS) to measure lactate, glutamate plus glutamine (Glx) and γ-aminobutyric acid (GABA), as indicators of aerobic glycolysis and excitatory-inhibitory balance, respectively. Both lactate and Glx increased upon activating VC, but did not change upon deactivating PCC. Basal GABA was negatively correlated with BOLD responses in both brain areas, but during functional tasks GABA decreased in VC upon activation and GABA increased in PCC upon deactivation, suggesting BOLD responses in relation to baseline are impacted oppositely by task-induced inhibition. In summary, opposite relations between BOLD response and GABAergic inhibition, and increases in aerobic glycolysis and glutamatergic activity distinguish the BOLD response in (de)activated areas.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3