Hyaluronidase reduced edema after experimental traumatic brain injury

Author:

Washington Patricia M12,Lee Changhee2,Dwyer Mary Kate R2,Konofagou Elisa E2,Kernie Steven G1,Morrison Barclay2

Affiliation:

1. Department of Pediatrics, Columbia University Medical Center, New York, NY, USA

2. Department of Biomedical Engineering, Columbia University, New York, NY, USA

Abstract

Cerebral edema and the subsequent increased intracranial pressure are associated with mortality and poor outcome following traumatic brain injury. Previous in vitro studies have shown that the Gibbs-Donnan effect, which describes the tendency of a porous, negatively charged matrix to attract positive ions and water, applies to brain tissue and that enzymatic reduction of the fixed charge density can prevent tissue swelling. We tested whether hyaluronidase, an enzyme that degrades the large, negatively charged glycosaminoglycan hyaluronan, could reduce brain edema after traumatic brain injury. In vivo, intracerebroventricular injection of hyaluronidase after controlled cortical impact in mice reduced edema in the ipsilateral hippocampus at 24 h by both the wet-weight/dry-weight method (78.15 ± 0.65% vs. 80.4 ± 0.46%; p < 0.01) and T2-weighted magnetic resonance imaging (13.88 ± 3.09% vs. 29.23 ± 6.14%; p < 0.01). Hyaluronidase did not adversely affect blood–brain-barrier-integrity measured by dynamic contrast-enhanced magnetic resonance imaging, nor did hyaluronidase negatively affect functional recovery after controlled cortical impact measured with the rotarod or Morris water maze tasks. Reduction of fixed charge density by hyaluronidase was confirmed in cortical explants in vitro (5.46 ± 1.15 µg/mg vs. 7.76 ± 1.87 µg/mg; p < 0.05). These data demonstrate that targeting the fixed charge density with hyaluronidase reduced edema in an in vivo mouse model of traumatic brain injury.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3