Targeted capillary photothrombosis via multiphoton excitation of Rose Bengal

Author:

Delafontaine-Martel Patrick12ORCID,Zhang Cong12,Lu Xuecong23,Damseh Rafat24,Lesage Frédéric12,Marchand Paul J125

Affiliation:

1. Department of Electrical Engineering, Polytechnique Montreal, Montreal, Canada

2. Research Center, Montreal Heart Institute, Montreal, Canada

3. DeGroote School of Business – McMaster University, Ontario, Canada

4. College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates

5. École polytechnique fédérale de Lausanne- EPFL, Lausanne, Switzerland

Abstract

Microvascular stalling, the process occurring when a capillary temporarily loses perfusion, has gained increasing interest in recent years through its demonstrated presence in various neuropathologies. Studying the impact of such stalls on the surrounding brain tissue is of paramount importance to understand their role in such diseases. Despite efforts trying to study the stalling events, investigations are hampered by their elusiveness and scarcity. In an attempt to alleviate these hurdles, we present here a novel methodology enabling transient occlusions of targeted microvascular segments through multiphoton excitation of Rose Bengal, an established photothrombotic agent. With n = 7 mice C57BL/6 J (5 males and 2 females) and 95 photothrombosis trials, we demonstrate the ability of triggering reversible blockages by illuminating a capillary segment during ∼300 s at 1000 nm, using a standard Ti:Sapphire femtosecond laser. Furthermore, we performed concurrent Optical Coherence Microscopy (OCM) angiography imaging of the microvascular network to highlight the specificity of the targeted occlusion and its duration. Through comparison with a control group, we conclude that blood flow cessation is indeed created by the photothrombotic agent via multiphoton excitation and is temporary, followed by a flow recovery in less than 24 h. Moreover, Immunohistology points toward a stalling mechanism driven by adherence of the neutrophil in the vascular lumen. This observation seems to be promoted by the inflammation locally created via multiphoton activation of Rose Bengal.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3