SiO2-GO nanofillers enhance the corrosion resistance of waterborne polyurethane acrylic coatings

Author:

Liu Liqi1ORCID,Guo Xiaofeng1,Shi Lei1,Chen Liquan1,Zhang Fangzhou2,Li Aijun1

Affiliation:

1. School of materials Science and Engineering, Shanghai University, Shanghai, China

2. Institute for sustainable Energy / College of Sustainable Energy, Shanghai University, Shanghai, China

Abstract

Corrosion to metal is a great challenge to major industries. Anticorrosive coatings can effectively prevent metal corrosion. In this study, we propose a novel method to prepare silica nanoparticles-covered graphene oxide (SiO2-GO) nanohybrids and anticorrosion SiO2-GO/waterborne polyurethane acrylic (WPUA) coatings. Firstly, we obtained silane-functionalized graphene oxide (A-GO) via a simple covalent functionalization of graphene oxide (GO) with 3-aminopropyltriethoxysilane. Secondly, SiO2-GO was synthesized by a simple sol–gel method with tetraethoxysilane in water–alcohol solution. Finally, the obtained SiO2-GO nanofillers were added into WPUA to prepare SiO2-GO/WPUA coatings. GO, A-GO, and SiO2-GO nanohybrids could be confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectra, and transmission electron microscope. SiO2-GO nanohybrids showed small size compared with the unfunctionalized GO. Meanwhile, GO, A-GO, and SiO2-GO nanofillers were added into WPUA. The electrochemical impedance spectroscopy and field emission scanning electron microscope indicate that SiO2-GO nanohybrids can be homogeneously dispersed in the WPUA coatings at 0.4% loading level and the SiO2-GO/WPUA film exhibits excellent anticorrosion performance. SiO2-GO nanoparticles can effectively utilize in the area of anticorrosive nanofiller industry. This study provides a convenient method of anticorrosive coating production.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3