Effect of silica‐loaded polydopamine‐modified graphene oxide nanocomposites on the corrosion resistance of polyester coatings

Author:

Ding Guoxin12ORCID,Liu Jun1,Hu Yuexiang1,Cheng Guojun1,Sun Chenfeng1,Liu Yan1,Chen Xiangxiang1

Affiliation:

1. Anhui University of Science and Technology Huainan China

2. Institute of Environment–friendly Materials and Occupational Health, Anhui University of Science and Technology Wuhu China

Abstract

AbstractOn the basis of the complex environment of port terminals, the corrosion resistance of coatings for accompanying metal facilities is a primary factor that needs to be considered. This study prepared polydopamine‐modified graphene oxide loaded with silicon dioxide (PGO@SiO2) functional filler, which was incorporated into polyester resin (PR) by extrusion mixing. The PGO@SiO2/PR composite coating was obtained by electrostatic spraying and high‐temperature curing. Fourier transform infrared spectroscopy, x‐ray diffraction, and other results confirmed the successful preparation of the PGO@SiO2 functional filler. In addition, contact angle, adhesion, and corrosion resistance tests were performed on the composite coating. Compared with pure PR coating, the surface hydrophobicity and adhesion of the composite coating were significantly improved compared with the pure PR coating. Furthermore, the electrochemical impedance spectroscopy of the carbon steel substrate composite coating confirmed that after immersion in salt solution, the low‐frequency impedance modulus of the composite coating could be maintained at 8.63 × 108 Ω·cm2, which was more than two orders of magnitude higher than that of the pure PR coating. Thus, PGO@SiO2 could significantly enhance the corrosion resistance of the PR coating and hinder the infiltration of corrosive media. It has broad prospects for engineering applications because of its excellent anticorrosive performance.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3