Ambient affiliation: A linguistic perspective on Twitter

Author:

Zappavigna Michele1

Affiliation:

1. University of Sydney, Australia,

Abstract

This article explores how language is used to build community with the microblogging service, Twitter (www.twitter.com). Systemic Functional Linguistic (SFL), a theory of language use in its social context, is employed to analyse the structure and meaning of ‘tweets’ (posts to Twitter) in a corpus of 45,000 tweets collected in the 24 hours after the announcement of Barak Obama’s victory in the 2008 US presidential elections. This analysis examines the evaluative language used to affiliate in tweets. The article shows how a typographic convention, the hashtag, has extended its meaning potential to operate as a linguistic marker referencing the target of evaluation in a tweet (e.g. #Obama). This both renders the language searchable and is used to upscale the call to affiliate with values expressed in the tweet. We are currently witnessing a cultural shift in electronic discourse from online conversation to such ‘searchable talk’.

Publisher

SAGE Publications

Subject

Sociology and Political Science,Communication

Reference40 articles.

Cited by 403 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3