Preparation and study on the optical, mechanical, and antibacterial properties of polylactic acid/ZnO/TiO2 shared nanocomposites

Author:

Tajdari Ali1ORCID,Babaei Amir1,Goudarzi Alireza1,Partovi Razie2

Affiliation:

1. Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran

2. Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran

Abstract

In this research, first, ZnO nanorods were synthesized by hydrothermal method and characterized in terms of morphological and structural properties by means of field emission scanning electron microscopy, Fourier transform infrared, and X-ray diffraction techniques. Subsequently, polylactic acid/ZnO, polylactic acid/TiO2, and polylactic acid/ZnO/TiO2 nanocomposites with different percentages of nanoparticles and two different types of ZnO morphologies were prepared and their microstructural, optical, mechanical, hydrolytic degradation, and antibacterial properties were investigated. Field emission scanning electron microscopy results of polylactic acid/ZnO and polylactic acid/TiO2 samples showed a proper dispersion and nanoparticle distribution for low percentages (up to 5 wt%) and increased aggregation for the higher percentages. Besides, a large increase in the aggregation tendency was observed for combined nanoparticles (polylactic acid/ZnO/TiO2 nanocomposites). Results of the tensile test, the UV–Vis absorption tests, and the hydrolytic degradation tests of the samples showed an enhanced mechanical (approximately 55% increase in the presence of 3–5 wt% of nanoparticles) and light absorption and degradation (approximately 85% increase in the presence of 3–10 wt% of nanoparticles) for the polylactic acid by incorporating nanoparticles. It was also observed that, in addition to the quality of dispersion and distribution of nanoparticles in the polymeric matrix, the type of morphology of nanoparticles can contribute to the improvement of these properties. The cylindrical morphology of ZnO played a greater role on improving the polylactic acid mechanical properties compared to the spherical ZnO morphology (approximately 20%). On the contrary, the increased polylactic acid optical properties and degradation with ZnO spherical morphology were more pronounced (approximately 60%). Interestingly, when both ZnO and TiO2 were added, a synergistic effect in the case of UV-shielding and degradation rate and alternatively, a detrimental effect on the mechanical properties were detected. (The polylactic acid optical properties increased by about 17% and its degradation more than doubled.) Furthermore, the antibacterial activity of polylactic acid was investigated against the two Gram-positive Listeria monocytogenes and Gram-negative bacteria Escherichia coli by incorporating nanoparticles. The results indicated that as the nanoparticle percentage increases, the antibacterial activity steadily increases.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3