Preparation and characterization of films made of poly(l-lactic acid)/poly(l-lactic acid) grafted maleic anhydride/epigallocatechin gallate blends for antibacterial food packaging

Author:

Moreno-Vásquez María J12,Plascencia-Jatomea Maribel2,Sánchez-Valdes Saúl3,Castillo-Yáñez Francisco J1,Ocaño-Higuera Víctor M1,Rodríguez-Félix Francisco2,Rosas-Burgos Ema C2,Graciano-Verdugo Abril Z1

Affiliation:

1. Departamento de Ciencias Químico Biológicas, Universidad de Sonora, México

2. Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, México

3. Centro de Investigación en Química Aplicada, México

Abstract

The antimicrobial activity of films made of poly(l-lactic acid)/poly(l-lactic acid) grafted maleic anhydride(copolymer)/epigallocatechin gallate(EGCG) blend was determined. The effect of epigallocatechin gallate incorporation (0.03, 0.5, 5, and 10 wt%) as a natural antibacterial was determined by direct contact, solid and liquid culture media. The film antimicrobial activity was evaluated against two bacteria (gram-negative: Pseudomonas spp.; gram-positive: Staphylococcus aureus). The copolymer was prepared and characterized by Fourier transform infrared analysis and Molau test. Furthermore, the degree of grafting was determined. The epigallocatechin gallate migration profile through the films were determined and the minimum epigallocatechin gallate concentration in films required to show antibacterial activity was evaluated. The results showed that only the films with 10 wt% epigallocatechin gallate significantly affected ( p < 0.05) the cell morphology and inhibited the growth of S. aureus (56% with copolymer and 55% inhibition without copolymer) and Pseudomonas spp. (28% inhibition, with and without copolymer). Incorporating copolymer inhibited the growth of Pseudomonas spp. and induced morphological changes in S. aureus. The diffusion coefficient was dependent on the presence of copolymer, which increased the epigallocatechin gallate release rate. Incorporating epigallocatechin gallate and copolymer modified the film properties. Fourier transform infrared analysis indicated hydrogen bonds which were attributed to the interaction between copolymer and epigallocatechin gallate. The results demonstrate the potential application of poly(l-lactic acid) (biodegradable polymer) and copolymers in active packaging, as well as the importance of incorporating epigallocatechin gallate as a natural antibacterial agent.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3