Antimicrobial activity and physicochemical characterization of thermoplastic films based on bitter cassava starch, nanocellulose and rosemary essential oil

Author:

Araya Josette1,Esquivel Marianelly1,Jimenez Guillermo1ORCID,Navia Diana2,Poveda Luis2

Affiliation:

1. Polymer Laboratory, School of Chemistry, Universidad Nacional, Heredia, Costa Rica

2. Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Cali, Colombia

Abstract

Extended shelf-life of many foods is a modern requirement that has been achieved by means of fossil-based plastic films despite their environmental issues. Recently, starch-based, fully biodegradable thermoplastics are gaining momentum as packaging material; however, if they are in contact with food, aspects such storage, water interaction and spoilage due to microorganisms must be considered. Essential oils are of great interest due to their antimicrobial action, so incorporating these compounds into natural polymers can promote a longer shelf life through active packaging. In this study, antibacterial activity, optical, mechanical and barrier properties of thermoplastic starch (TPS) films based on cassava starch ( Manihot esculenta Crantz) and rosemary essential oil (REO) were studied. Furthermore, the effect of cellulose nanocrystals (CNC) on TPS properties were surveyed. Film mechanical properties and those related to the interaction with water, showed that the highest resistance and barrier properties corresponded to the TPS/CNC 15% film, while adding oil to the films increased morphological heterogeneity, contributed to reduce tensile strength, and increased water solubility and water vapor permeability. Likewise, TPS films containing rosemary oil showed enhanced antibacterial activity mostly against E. coli and S. aureus bacteria and A. niger fungus. Therefore, adding essential oils as natural additives favors using these biocomposites as functional packaging, and as potential replacements for single-use plastics.

Funder

FITTACORI, Ministry of Agriculture, Costa Rica

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3