Microelasticity of red blood cells in sickle cell disease

Author:

Maciaszek J L1,Andemariam B2,Lykotrafitis G1

Affiliation:

1. Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, USA

2. Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, USA

Abstract

Translation of cellular mechanics findings is crucial in many diseases, including Alzheimer’s disease, Parkinson’s disease, type II diabetes, malaria, sickle cell disease, and cancer. Atomic force microscopy (AFM) is appropriate for measuring mechanical properties of living and fixed cells due to its high force sensitivity and its ability to measure local and overall properties of individual cells under physiological conditions. A systemic force–displacement curve analysis is reported on the quantification of material stiffness via AFM using two theoretical models derived from the Hertz model. This analysis was applied to red blood cells from patients with sickle cell disease to determine the Young’s modulus of these cells in the oxygenated and deoxygenated state. Sickle cell disease pathophysiology is a consequence of the polymerization of sickle hemoglobin in red blood cells upon partial deoxygenation and the impaired flow of these cells in the microcirculation. A model is presented for a four-sided pyramidal indenter that is subsequently shown to have a better fit to the obtained data than that using a model of a parabolic indenter. It is concluded that deoxygenation and therapeutic treatment have a significant impact on the stiffness. This analysis presents a new approach to addressing medical disorders.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3