Multiscale Modelling of the Poroviscoelastic Rheology of Cell Cytoplasm

Author:

Thekkethil Namshad1,K\"{o}ry Jakub1,Guo Ming2,Stewart Peter S.1,Hill Nicholas A.1,Luo Xiaoyu1

Affiliation:

1. University of Glasgow

2. Massachusetts Institute of Technology

Abstract

Abstract Eukaryotic cell rheology has important consequences for vital processes such as adhesion, migration, and differentiation. Experiments indicate that cell cytoplasm can exhibit both elastic and viscous characteristics in different regimes, while the transport of fluid (cytosol) through the cross-linked filamentous scaffold (cytoskeleton) is reminiscent of mass transfer by diffusion through a porous medium. To gain insights into this complex rheological behaviour, we construct a multi-scale computational model for the cell cytoplasm as a poroviscoelastic material formulated on the principles of nonlinear continuum mechanics, where we model the cytoplasm as a porous viscoelastic scaffold with an embedded viscous fluid flowing between the pores to model the cytosol. Baseline simulations (neglecting the viscosity of the cytosol) indicate that the system exhibits seven different regimes across the parameter space spanned by the viscoelastic relaxation timescale of the cytoskeleton and the poroelastic diffusion timescale; these regimes agree qualitatively with experimental measurements. Furthermore, the theoretical model also allows us to elucidate the additional role of pore fluid viscosity, which enters the system as a distinct viscous timescale. We show that increasing this viscous timescale hinders the passage of the pore fluid (reducing the poroelastic diffusion) and makes the cytoplasm rheology increasingly incompressible, shifting the phase boundaries between the regimes.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3