On applicability of MQ-RPIM and MLPG meshless methods with 3D extended-enriched base functions for estimation of mode I stress intensity factor and fatigue crack growth in cyclic tensile and bending load of an un-notched and notched shaft

Author:

Ariannezhad Behrooz1ORCID,Shahrooi Shahram1ORCID,Shishehsaz Mohammad2

Affiliation:

1. Department of Mechanical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

2. Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

In this study, a numerical meshless method is used to solve the weak form of the linear elastic equations in solid mechanics. Evaluation and comparison of the numerical meshless methods have been carried out via the radial point interpolation meshless method with multi-quadrics base functions (MQ-RPIM) and meshless local Petrov-Galerkin method (MLPG). Using these two methods, stress intensity factors in an elastic medium containing geometric discontinuities and cracks are estimated based on tensile and bending cyclic loading. The analysis domain has been identified via three-dimensional modeling of the notched and un-notched shafts with an initial surface semi-elliptical crack subjected to tensile or bending cyclic loadings. To enhance the accuracy of calculations, the RPIM meshless method is applied using polynomial and extended-enriched 3D base functions. Shape functions have been developed using standard and optimal parameters and values with Mono-Objective Function in PSO algorithm. In the MLPG meshless method with the extended-enriched functions, discretization is performed via direct and penalty factor methods, to reach more efficient results and meet the boundary conditions. Efficiency comparison of the selected numerical methods with the experimental findings and the numerical analysis of finite elements method indicates that in comparison with the MLPG method, MQ-RPIM enriched meshless method can be utilized with fewer nodes in the analysis domain while reaching the accuracy and convergence with lower stress intensity factors and gentler slope. However, the processing time of the MLPG meshless method is lower than that of the other methods.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3