Evaluation and optimization of meshless methods to estimation of the 3D-stress intensity factors in mode I–III for fatigue life prediction cracked shaft under uni and multi-axial cyclic loading

Author:

Ariannezhad Behrooz1ORCID,Shahrooi Shahram1ORCID,Shishehsaz Mohammad2ORCID

Affiliation:

1. Department of Mechanical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

2. Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

In this research, in order to estimate 3D-Stress Intensity Factors in mode I–III, fatigue crack growth and fatigue life prediction of a cracked shaft under various cyclic loading, meshless methods are evaluated and the most appropriate method is selected. For better results, the Base Functions (BFs) are first identified and their performance and efficiency are compared with each other. In addition, while enriching the BFs in all methods and study the effect of increasing the number of sentences of Polynomial-BFs (m = 4, 7,10) and their Linearity or Quadraticity in the accuracy of calculations, two sets of Extend-Enriched-RBFs including the Multi-Quadrics and Gaussian RBFs are used in MQ-RPIM and EXP-RPIM methods. To optimize the shape parameters in the RPIM method and determine the Penalty Factor in the MLPG method, Uni and Multi-objective PSO algorithm was used. Then, a shaft with an initial semi-elliptic surface crack as a 3D-meshless domain for discretizing the weak differential equations was selected and modeled under a fixed latitude tensile, bending, and torsional cyclic loads. Changing the standard values of the shape parameters and estimating their optimal values by the PSO algorithm and comparison of findings with the results of Experimental, MLPG, PIM, FEM, and XFEM methods, has led to the best answer from the applied methods for calculation of; displacement, strain and stress fields, and the SIFs in Mode I–III. Finally, based on the results of uniaxial cyclic load analysis and selection of the MQ-RPIM method, the Multi-axial Cyclic load analysis has been performed on 3D-domain. During this analysis, the Paris Parametric equation along with the Elliptic equation and Liu’s Virtual Strain Energy (VSE) model was used to estimate the fatigue crack growth and fatigue life prediction of a submersible cracked shaft of a pump used in water pumping stations.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3