Fatigue crack growth “overload effect”: mechanistic insights from in-situ synchrotron measurements

Author:

Croft Mark12,Jisrawi Najeh13,Ignatov Alexander1,Holtz Ronald L4,Zhong Zhong2

Affiliation:

1. Department of Physics, Rutgers University, USA

2. National Synchrotron Light Source, Brookhaven National Laboratory, USA

3. Department of Applied Physics, University of Sharjah, United Arab Emirates

4. Naval Research Laboratory, Washington DC, USA

Abstract

Synchrotron-based, high-energy X-ray diffraction measurements are used to study the local strain fields underlying the transient fatigue crack growth rate retardation produced by a single overload cycle known as the overload effect. Specifically, 4140 steel compact tension specimens fatigued for varying levels of crack growth after an overload cycle have been studied with in-situ diffraction under varying external loads. The load responses of the strain at the overload-position, versus at the crack tip, are focused upon in detail. The large compressive residual strain at the overload-point is observed to remain essentially unchanged even after the overload-point is left in the wake of the propagating crack tip. The differential strain-load response at the crack-tip/overload position before and immediately after the overload is seen to be unchanged. Once the overload point is behind the crack tip, a highly nonlinear behavior is observed in which the load response of the strain field transfers from the overload -point to the crack tip when the load exceeds a critical value. The results are discussed in terms of plasticity-induced crack face contact at the overload point as an important local mechanism contributing to the “overload effect” in this specific system.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3