Numerical and experimental validation of a theoretical model for bimaterial helical springs

Author:

Dragoni Eugenio1,Bagaria William J2

Affiliation:

1. Department of Engineering Sciences and Methods, University of Modena and Reggio Emilia, Reggio Emilia, Italy

2. Aerospace Engineering Department, United States Naval Academy, Annapolis, MD, USA

Abstract

This article deals with the numerical and experimental validation of a theoretical elastic model for bimaterial helical springs developed by the authors in a recently published article. The numerical validation is performed on finite element models involving one half turn of several springs identified by three spring indices ( c =  D/ d = 3, 5, 10) and three section types (solid homogeneous, solid bimaterial and thin hollow). The experimental validation involves compression tests on two polymer (acrylonitrile butadiene styrene) spring configurations produced by rapid prototyping and cladded by ionic infiltration with CrNiCo alloy. For the larger prototype spring, the stresses are measured on the outside of the coil by means of miniature strain gauges. The numerical results confirm the theoretical stress concentration factors within an error of 5%. The experimental results closely agree with the predicted spring rates of all springs, either fully polymeric or bimaterial. In addition, the strain gauge measurements on the instrumented spring correlate well with the theoretical stresses calculated for that particular geometry.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modelling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Magnetorheological Fluid Filled Spring for Variable Stiffness and Damping: Current and Potential Performance;Frontiers in Materials;2022-03-11

2. Evaluation of Energy-Based Model Generated Strain Signals for Carbon Steel Spring Fatigue Life Assessment;Metals;2019-02-12

3. Designing novel multilayered nanocomposites for high-performance coating materials with online strain monitoring capability;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2017-03-28

4. Formulation of a three-dimensional shear-flexible bimaterial beam element with constant curvature;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2014-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3