Mechanical design of bimaterial helical springs with circular cross-section

Author:

Dragoni E1,Bagaria W J2

Affiliation:

1. Department of Engineering Sciences and Methods, University of Modena and Reggio Emilia, Reggio Emilia, Italy.

2. Professor Emeritus, Aerospace Engineering Department, United States Naval Academy, Annapolis, MD, USA.

Abstract

This paper presents an approximate theoretical model for the mechanical behaviour of helical springs with circular cross-section formed by an inner elastic core encased in an outer annulus of dissimilar elastic properties. Closed-form equations are developed for stresses and deflection in the spring undergoing either bending or axial end loads. For both loading conditions, the model takes into account the stress concentrations arising in the cross-section due to curvature of the spring axis. The disclosed equations are specialized for bimaterial springs with a polymer core and a thin nanometal cladding, a solution reflecting a unique technology recently brought onto the market by a leading polymer manufacturer. In this special case, the cladding performs as an efficient thin-walled tube under torsion with the soft core preventing the danger of wall instability. A design procedure is exemplified, showing that this construction leads to lighter and smaller springs than all-metal or all-polymer counterparts.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3