Affiliation:
1. Department of Engineering, University of Cambridge, Cambridge, UK
Abstract
The traditional solution for the stresses below an elliptical Hertzian contact expresses the results in terms of incomplete Legendre elliptic integrals, so are necessarily based on the length of the semi-major axis a and the axis ratio k. The result is to produce completely different equations for the stresses in the x and y directions; and although these equations are now well-known, their derivation from the fundamental, symmetric, integrals is far from simple. When instead Carlson elliptic integrals are used, they immediately match the fundamental integrals, allowing the equations for the stresses to treat the two semi-axes equally, and so providing a single equation where two were needed before. The numerical evaluation of the Carlson integrals is simple and rapid, so the result is that more convenient answers are obtained more conveniently. A bonus is that the temptation to record the depth of the critical stresses as a fraction of the length of the semi-major axis is removed. Thomas and Hoersch’s method of finding all the stresses along the axis of symmetry has been extended to determine the full set of stresses in a principal plane. The stress patterns are displayed, and a comparison between the answers for the planes of the major and minor semiaxes is made. The results are unchanged from those found from equations given by Sackfield and Hills, but not previously evaluated. The present equations are simpler, not only in the simpler elliptic integrals, but also for the “tail” of elementary functions.
Subject
Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation
Reference9 articles.
1. Contact Mechanics
2. Carlson BC. Elliptic integrals. Digital library of mathematical functions (DLMF) chapter 19, http://dlmf.nist.gov/ (2010).
3. Hertz theory and Carlson elliptic integrals
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献