Analytic contact solutions of the Boussinesq and Cattaneo problems for an ellipsoidal power-law indenter

Author:

Willert EmanuelORCID

Abstract

AbstractBased on Galin’s theorem for the indentation of an elastic half-space by a polynomial punch and Barber’s theorem for the determination of the contact area in elastic normal contact problems, an exact contact solution is developed for the frictionless indentation of an elastic half-space by an ellipsoidal power-law punch. Within the Cattaneo–Mindlin-approximation of tangential contacts, the tangential contact problem with friction can be reduced to the frictionless normal contact via the Ciavarella–Jäger principle, based on which also the tangential contact solution for the ellipsoidal power-law indenter is given. All known solutions for special cases (axisymmetric contact, elliptical Hertzian contact) are exactly recovered. A comparison of the pressure distribution obtained analytically for the 4-th power ellipsoidal indenter with a corresponding numerical solution based on the boundary element method shows no noticeable differences. The proposed solution procedure can also be used exactly for an arbitrary finite superposition of ellipsoidal power-law profiles, and, in an approximate sense, is applicable for arbitrary monotonous ellipsoidal profiles.

Funder

Deutsche Forschungsgemeinschaft

Technische Universität Berlin

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference28 articles.

1. Hertz H (1882) Über die Berührung fester elastischer Körper. J für Reine Angew Math 92:156–171

2. Schubert G (1942) Zur Frage der Druckverteilung unter elastisch gelagerten Tragwerken. Ingenieur-Archiv 13:132–147. https://doi.org/10.1007/BF02095912

3. Vorobev VN (1973) An analytic solution of the problem of the contact of a stamp with an elliptic horizontal section with an elastic half-space. J Comput Math Math Phy 13(2):515–519 ((in Russian))

4. Argatov II (2000) The pressure on an elastic half-space of a punch with a surface close to an elliptical paraboloid. J Mach Manuf Reliab 1:101–105 ((in Russian))

5. Popov VL (2022) An approximate solution for the contact problem of profiles slightly deviating from axial symmetry. Symmetry 14:390. https://doi.org/10.3390/sym14020390

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3