Affiliation:
1. Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
2. Salzgitter Mannesmann Forschung GmbH, Germany
3. Technische Universität Berlin, Berlin, Germany
Abstract
Responding to a growing interest from the materials science community for residual stress, texture, and microstructure analysis, strong efforts are made to enhance existing and develop novel methods that allow for fast in-situ studies at elevated temperature, measurements under external load, or residual strain, and stress scanning with high spatial resolution. In the paper, energy-dispersive diffraction using high-energy white synchrotron radiation is shown to provide some distinct advantages concerning residual stress and texture analysis, which mainly arise from the fact that the energy-dispersive diffraction mode allows for the measurement of complete diffraction patterns under fixed but arbitrary scattering angles, 2θ. A new two-detector set-up for simultaneous in- and out-of-plane diffraction analysis, which has been put into operation recently at the energy-dispersive materials science beamline EDDI at BESSY II, is introduced by using the examples of real-space residual stress and texture depth profiling on mechanically treated polycrystalline materials as well as of the in-situ study of (residual) stress evolution in a thin film at elevated temperature. It will be demonstrated that the individual measuring problems require the application of different geometrical slit configurations to define the pathways of the diffracted beams.
Subject
Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modelling and Simulation
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献