Affiliation:
1. Faculty of Civil Engineering, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Viet Nam
Abstract
The present study introduces a novel higher-order shear deformation theory for assessing buckling and free vibration characteristics in laminated composite and functionally graded porous beams. The proposed theoretical framework effectively considers three variables and eliminates the need for a shear correction factor. The governing equations are derived from the Lagrange principle, while Legendre-Ritz functions are utilised to solve the resulting problem. Various types of laminated composite beams with arbitrary lay-ups and functionally graded porous beams with symmetric or unsymmetric configurations are analysed. To validate the accuracy and efficiency of the proposed theory, several numerical examples are conducted and compared against the results of existing research endeavours.
Subject
Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献