Determination of mechanical properties from sharp dynamic indentation

Author:

Si Bowen12,Li Zhiqiang12,Xiao Gesheng12ORCID,Shu Xuefeng12

Affiliation:

1. Institute of Applied Mechanics, College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China

2. Shanxi Key Laboratory of Material Strength and Structural Impact, Taiyuan, China

Abstract

In this study, a dynamic indentation test method based on the split Hopkinson pressure bar is proposed to obtain the dynamic parameters of Ludwik power law constitutive, namely, Young’s modulus E, strength coefficient K, and strain hardening index n by analyzing dynamic indentation load-indentation depth curve obtained from the theories relating to the Hopkinson pressure bar. The important parameters, namely, loading curvature C and transformation factor [Formula: see text], are invoked to examine the dynamic indentation response results in a wide range of target material parameters. Finite element calculation results are processed through simulation of dynamic indentation response with broad material parameters. Furthermore, the analytical method is used to fit simulation results to obtain the analytical equations for elastic–plastic parameters and curvature parameters for the subsequent analysis. The analytical equation of forward model to predict dynamic indentation response parameter–loading curvature C of a known material is proposed. Then, the elastic–plastic parameters of unknown materials (according to Ludwik power law) are obtained by substituting the dynamic indentation response parameters into an inverse analytical equation under the two types of half-cone angle indenters. The method is verified by other typical materials, which shows that the dynamic indentation test based on the split Hopkinson pressure bar can obtain sufficient conditions to obtain dynamic mechanical properties of target materials.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3