Research on incremental forming simulation based on an improved constitutive model

Author:

Shi Yujie1,LU Shihong1,Liu Luteng1,Zhang Zhijuan1,Zhang Haojia1

Affiliation:

1. Faculty of Mechatronics, Nanjing University of Aeronautics and Astronaut, Nanjing, China

Abstract

The incremental sheet metal forming process, characterized by the step-by-step deformation of sheet metal using a simple die, is classified as a type of plastic deformation technology. This method allows for the formation of complex-shaped parts even without the use of a specialized die. Its notable characteristic lies in its low forming load and high flexibility. To accurately forecast finite element simulation outcomes for the incremental sheet forming of 2024-O aluminum alloy sheets, constructing a precise constitutive model is essential. Typically, the uniform strain range in traditional unidirectional tensile tests does not surpass 0.3, primarily due to the necking phenomenon. This limitation hampers the accurate prediction of the actual large plastic deformation process. To address this issue, a theoretical model describing the stress-strain relationship in metal plastic deformation processes is developed using crystal plasticity theory. The constitutive model for the forming of 2024-O aluminum alloy is then constructed by adjusting the hardening coefficient and hardening index. Utilizing the improved constitutive model, the incremental sheet forming process is simulated using ABAQUS software. Upon comparison with experimental results, it is observed that the Thickness Average Absolute Relative Errors (TAARE) of the adjusted constitutive model at forming angles of 60°, 55°, and 50° are 0.414%, 0.467%, and 0.256%, and The Thickness Root Mean Square Errors (TRMSE) are determined as 0.0121, 0.0116, and 0.0094, respectively. These results indicate that the constitutive model and parameters established in this study can adequately capture the mechanical behavior of 2024-O aluminum alloy during the incremental sheet forming process.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3