Experimental measurement and numerical modelling of dye washout for investigation of blood residence time in ventricular assist devices

Author:

Molteni Alessandra1,Masri Zubair PH2,Low Kenny WQ3,Yousef Haitham N3,Sienz Johann3,Fraser Katharine H2

Affiliation:

1. Calon Cardio-Technology Ltd, Institute of Life Science, Swansea, UK

2. Department of Mechanical Engineering, University of Bath, Bath, UK

3. Advanced Sustainable Manufacturing Technologies (ASTUTE) 2020 Operation, College of Engineering, Swansea University, Swansea, UK

Abstract

Ventricular assist devices have become the standard therapy for end-stage heart failure. However, their use is still associated with severe adverse events related to the damage done to the blood by fluid dynamic stresses. This damage relates to both the stress magnitude and the length of time the blood is exposed to that stress. We created a dye washout technique which combines experimental and numerical approaches to measure the washout times of ventricular assist devices. The technique was used to investigate washout characteristics of three commercially available and clinically used ventricular assist devices: the CentriMag, HVAD and HeartMate II. The time taken to reach 5% dye concentration at the outlet (T05) was used as an indicator of the total residence time. At a typical level of cardiac support, 5 L/min and 100 mmHg, T05 was 0.93, 0.28 and 0.16 s for CentriMag, HVAD and HeartMate II, respectively, and increased to 5.06, 1.64 and 0.96 s for reduced cardiac support of 1 L/min. Regional variations in washout characteristics are described in this article. While the volume of the flow domain plays a large role in the differences in T05 between the ventricular assist devices, after standardising for ventricular assist device volume, the secondary flow path was found to increase T05 by 35%. The results explain quantitatively, for the first time, why the CentriMag, which exerts low shear stress magnitude, has still been found to cause acquired von Willebrand Syndrome in patients.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3