Experimental and numerical investigation of different geometrical parameters in a centrifugal blood pump

Author:

Hosseini Seyed Ehsan,Keshmiri AmirORCID

Abstract

Abstract Purpose Due to the importance of public health and economics, cardiovascular disease has become one of the most important debates and challenges for scientists. However, few studies have been done to address this challenge. The main objective of this document is to provide an optimal model to improve the performance of the left ventricular assist device and reduce costs. In this way, in the present study, the experimental and numerical procedures were developed to analyze the effects of the geometrical features and operational parameters on the performance of a centrifugal blood pump (CBP). Methods In order to achieve this aim, first, experimental tests were carried out to study the influence of the working fluid temperature and the rotational speed on the CBP. Subsequently, the performance of the CBP was assessed using computational fluid dynamics (CFD), and comparison was made against the experimental data. In addition, the influence of mounting an inducer on the overall performance of CBP was also investigated. Results Good agreement between the CFD and the data was obtained. The CFD results showed that increasing the fluid temperature and rotational speed leads to an increase in the hydraulic efficiency, pressure difference, and power. In addition, the reduction of the pressure difference and hydraulic efficiency with increasing the surface roughness was observed. While mounting an inducer on the pump did not significantly impact its overall performance, the highest value of the wall shear stress dropped moderately on the impeller and, therefore, unveiled the possibility of improving the performance of such designs.

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3