Affiliation:
1. Division of Nephrology and Dialysis, St. Bortolo Hospital, Vicenza - Italy
2. Fresenius Medical Care, Bad Homburg - Germany
Abstract
Current haemodialysis therapy modalities such as haemodiafiltration enhance the removal of larger uraemic solutes from the blood of patients on end-stage renal disease. A number of clinical investigations have demonstrated the clinical benefits of such therapies in contributing towards better patient survival rates and an improved quality of life. A fundamental prerequisite to the application of convective treatment modalities is the availability of appropriate, technologically-advanced high-flux dialysis membranes that are able to eliminate larger uraemic substances with high efficiency but without causing an excessive leakage of useful proteins. A new membrane, Helixone®, has been developed specifically to meet the present-day requirements of high-flux dialysis and haemodiafiltration therapies involving large substitution rates. The application of nanotechnology fabrication principles and procedures has enabled the development of a membrane having highly-defined inner, separating layer surface structures that offer minimal resistance to the removal of large molecular weight substances across the membrane; for the first time, pore size dimensions, pore size distribution and pore geometry have been modulated and controlled at the nanoscale level for Helixone®. This paper describes the characterisation of the essential structure- and permeation-related parameters of the new membrane using a number of physical analytical techniques.
Subject
Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献