Nanoscale Modulation of the Pore Dimensions, Size Distribution and Structure of a new Polysulfone-Based High-Flux Dialysis Membrane

Author:

Ronco C.1,Bowry S.2

Affiliation:

1. Division of Nephrology and Dialysis, St. Bortolo Hospital, Vicenza - Italy

2. Fresenius Medical Care, Bad Homburg - Germany

Abstract

Current haemodialysis therapy modalities such as haemodiafiltration enhance the removal of larger uraemic solutes from the blood of patients on end-stage renal disease. A number of clinical investigations have demonstrated the clinical benefits of such therapies in contributing towards better patient survival rates and an improved quality of life. A fundamental prerequisite to the application of convective treatment modalities is the availability of appropriate, technologically-advanced high-flux dialysis membranes that are able to eliminate larger uraemic substances with high efficiency but without causing an excessive leakage of useful proteins. A new membrane, Helixone®, has been developed specifically to meet the present-day requirements of high-flux dialysis and haemodiafiltration therapies involving large substitution rates. The application of nanotechnology fabrication principles and procedures has enabled the development of a membrane having highly-defined inner, separating layer surface structures that offer minimal resistance to the removal of large molecular weight substances across the membrane; for the first time, pore size dimensions, pore size distribution and pore geometry have been modulated and controlled at the nanoscale level for Helixone®. This paper describes the characterisation of the essential structure- and permeation-related parameters of the new membrane using a number of physical analytical techniques.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3