The scientific principles and technological determinants of haemodialysis membranes

Author:

Bowry Sudhir K1,Chazot Charles2

Affiliation:

1. Dialysis-at-Crossroads (D@X) Advisory, Bad Nauheim, Germany

2. NephroCare Tassin-Charcot, Sainte Foy les Lyon, France

Abstract

ABSTRACT In most biological or industrial (including medical) separation processes, a membrane is a semipermeable barrier that allows or achieves selective transport between given compartments. In haemodialysis (HD), the semipermeable membrane is in a tubular geometry in the form of miniscule pipes (hollow fibres) and separation processes between compartments involve a complex array of scientific principles and factors that influence the quality of therapy a patient receives. Several conditions need to be met to accomplish the selective and desired removal of substances from blood in the inner cavity (lumen) of the hollow fibres and across the membrane wall into the larger open space surrounding each fibre. Current HD membranes have evolved and improved beyond measure from the experimental membranes available in the early developmental periods of dialysis. Today, the key functional determinants of dialysis membranes have been identified both in terms of their potential to remove uraemic retention solutes (termed ‘uraemic toxins’) as well subsidiary criteria they must additionally fulfill to avoid undesirable patient reactions or to ensure safety. The production of hundreds of millions of kilometres of hollow fibre membranes is truly a technological achievement to marvel, particularly in ensuring that the fibre dimensions of wall thickness and inner lumen diameter and controlled porosity—all so vital to core solute removal and detoxification functions of dialysis—are maintained for every centimetre length of the fragile fibres. Production of membranes will increase in parallel with the increase in the number of chronic kidney disease (CKD) patients expected to require HD therapies in the future. The provision of high-quality care entails detailed consideration of all aspects of dialysis membranes, as quality cannot in any way be compromised for the life-sustaining—like the natural membranes within all living organisms—function artificial dialysis membranes serve.

Publisher

Oxford University Press (OUP)

Subject

Transplantation,Nephrology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3