Development of a simvastatin loaded injectable porous scaffold in situ formed by phase inversion method for bone tissue regeneration

Author:

Hajihasani Biouki Mina1,Mobedi Hamid2,Karkhaneh Akbar3,Daliri Joupari Morteza4

Affiliation:

1. Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2. Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran, Iran

3. Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

4. Department of Animal and Marine Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran

Abstract

Introduction: The use of injectable scaffolds as a minimally invasive method is a good choice in tissue engineering applications. A critical parameter for the tissue engineering scaffolds is a suitable morphology with interconnected pores. We present the development of a simvastatin loaded scaffold that forms in situ and provides the porous structure with interconnected pores. Methods: The formulation of these scaffolds includes a polymeric solution of poly lactic-co-glycolic acid (25 wt%) in N-methyl-2-pyrrolidone containing 6 wt% deionized water and porogen (mannitol, four times the weight of the polymer). We have grafted simvastatin to poly lactic-co-glycolic acid by the esterification reactions. Simvastatin or simvastatin-grafted poly lactic-co-glycolic acid in different levels was added to polymer solution and finally the solution was injected into phosphate buffered saline. The simvastatin-grafted poly lactic-co-glycolic acid was characterized by attenuated total reflection Fourier-transform infra-red and 1H-nuclear magnetic resonance spectroscopy. The morphology, porosity, and biocompatibility of the scaffolds were evaluated. The in vitro simvastatin release from the various formulations was studied. Osteogenic differentiation of the adipose-derived stem cells was investigated using alkaline phosphatase activity assay and cell mineralization was evaluated using Alizarin red staining. Results: The morphology results showed the resultant scaffold was porous with the interconnected pores. The scaffolds presented 91% porosity. Non-toxic doses of simvastatin in the scaffolds were determined by methyl-thiazolyl diphenyl-tetrazolium bromide assay. The released simvastatin from the scaffolds continues over 80 days. Alkaline phosphatase activity and Alizarin red results indicated that cell osteogenic differentiation is promoted. Conclusion: The results demonstrated that release of simvastatin from the injectable scaffolds can have positive effects on osteogenic differentiation of the adipose-derived stem cells.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3