Mechanical Properties and Biocompatibility of in Situ Enzymatically Cross-Linked Gelatin Hydrogels

Author:

Alarake Nada Z.1,Frohberg Patrick1,Groth Thomas23,Pietzsch Markus1

Affiliation:

1. Department of Downstream Processing, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) - Germany

2. Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) - Germany

3. Interdisciplinary Center for Material Science, Martin Luther University Halle-Wittenberg, Halle (Saale) - Germany

Abstract

Objectives Gelatin, a degraded collagen, has been widely used as a scaffolding material in tissue engineering applications. In this work, we aimed at the development of in situ, cross-linking, cytocompatible hydrogels by the use of transglutaminase as a cross-linker for potential application in the regeneration of tissues. Methods Hydrogels were prepared from gelatin of different concentrations and bloom degree (175 (G175) or 300 (G300) bloom gelatin) and cross-linked with various amounts of microbial transglutaminase (mTG) at 37°C. Mechanical properties and cross-linking degree were studied by rheology and swelling experiments. Four hydrogels with different stiffness were selected for studies with embedded human adipose-derived stem cells (hASCs). Results Hydrogels were obtained with storage modulus (G’) values between 11 (±1) Pa and 1,800 (±200) Pa with gelation times between 80 (±6) and 450 (±36) seconds. G300 cross-linked gelatin hydrogels displayed higher gel stiffness, lower swelling ratio and gelled more rapidly compared to the hydrogels prepared from G175. Stiffer hydrogels (50 and 200 Pa) showed greater ability to support the proliferation of hASCs than softer ones (11 and 30 Pa). The highest cell proliferation was observed with a hydrogel of 200 Pa modulus. Conclusions Overall, transglutaminase cross-linked gelatin hydrogels might be suitable as injectable hydrogels for the engineering of musculoskeletal and other types of connective tissues.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3