Affiliation:
1. Department of Medical and Surgical Sciences, University of Padova, Padova - Italy
2. Department of Clinical Chemistry, University of Padova, Padova - Italy
Abstract
The limited availability of human hepatocytes results in the use of animal cells in most bioartificial liver support devices. In the present work, clinically relevant liver specific metabolic activities were compared in rat, pig and human hepatocytes cultured on liver-derived biomatrix to optimize the expression of differentiated functions. Pig hepatocytes showed higher rates of diazepam metabolism (2.549±0.821 μg/h/million cells vs. 0.474±0.079 μg/h/million cells rats, p<0.005, and vs. 0.704±0.171 μg/h/million cells in man, p<0.005) and of bilirubin conjugation (21.60116±8.433237 μmoles/l/24 h vs. 6.786809±2.983758 in man, p<0.001 and vs. 9.956538±1.781016 μmoles/l/24 h in rats, p<0.005). Urea synthesis was similar in pig and in human hepatocytes (150±46.3 vs. 144.8±21.46 nmoles/h/million cells) and it was lower in rats (84.38±35.2; p<0.001 vs. man, p<0.02 vs. pig). High liver specific metabolic activities in cultured pig hepatocytes further support their use as a substitue for human cells in bioartificial liver devices
Subject
Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献