Surface and Hemocompatibility Studies of Bi-Soft Segment Polyurethane Membranes

Author:

Queiroz D.P.1,Pinto I.M.1,Besteiro M.C.F.2,Silva A.F.M.2,Gil M.H.2,Guiomar A.J.3,De Pinho M.N.1

Affiliation:

1. Department of Chemical Engineering, Higher Institute of Technology, Lisbon - Portugal

2. Department of Chemical Engineering, Faculty of Science and Technology, University of Coimbra, Coimbra - Portugal

3. Department of Biochemistry, Faculty of Science and Technology, University of Coimbra and Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra - Portugal

Abstract

Cross-linked urethane/urea membranes with two soft segments were prepared by extending a poly(propylene oxide) based tri-isocyanate-terminated prepolymer (PUR) with polybutadiene diol (PBDO). The ratio of prepolymer and polybutadiene diol was varied to yield cross-linked membranes with different compositions, exhibiting different degrees of phase-separation of the PBDO segments in the bulk and of surface enrichment in PUR. In this work, surface energy and hemocompatibility aspects (hemolysis and thrombosis) of the PUR/PBDO membranes were evaluated. The results showed that the membrane surface energy increased with the PBDO content until 25% of PBDO, and decreased thereafter. The introduction of the second, more hydrophobic, soft segment (PBDO) in the PUR membranes turned hemolytic into non-hemolytic membranes and, for a blood-material contact time of 10 minutes, decreased the thrombogenicity significantly. The 10% PBDO membrane was the least thrombogenic and was also non-hemolytic. The hemolysis degree did not vary significantly with the PBDO content while, for blood-material contact times of 10 minutes, the thrombogenicity increased with an increase in PBDO content above 10%. Membrane thrombogenicity varied with the blood-material contact time. For blood contact times of 10 minutes, all membranes tested were less thrombogenic than glass.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3