Transglutaminase-6 is an autoantigen in progressive multiple sclerosis and is upregulated in reactive astrocytes

Author:

Cristofanilli Massimiliano1,Gratch Daniel1,Pagano Benjamin1,McDermott Kelsey1,Huang Jessie1,Jian Jeffrey1,Bates Deneb2,Sadiq Saud A1

Affiliation:

1. Tisch MS Research Center of New York, New York, NY, USA

2. International Multiple Sclerosis Management Practice, New York, NY, USA

Abstract

Background: Transglutaminase-6 (TGM6), a member of the transglutaminase enzyme family, is found predominantly in central nervous system (CNS) neurons under physiological conditions. It has been proposed as an autoimmune target in cerebral palsy, gluten-sensitive cerebellar ataxia, and schizophrenia. Objective: To investigate TGM6 involvement in multiple sclerosis (MS). Methods: Antibody levels against TGM6 (TGM6-IgG) were measured in the cerebrospinal fluid (CSF) of 62 primary progressive multiple sclerosis (PPMS), 85 secondary progressive multiple sclerosis (SPMS), and 50 relapsing-remitting multiple sclerosis (RRMS) patients and 51 controls. TGM6 protein expression was analyzed in MS brain autopsy, murine experimental autoimmune encephalomyelitis (EAE), and cultured astrocytes. Results: CSF levels of TGM6-IgG were significantly higher in PPMS and SPMS compared to RRMS and controls. Notably, patients with clinically active disease had the highest TGM6-IgG levels. Additionally, brain pathology revealed strong TGM6 expression by reactive astrocytes within MS plaques. In EAE, TGM6 expression in the spinal cord correlated with disease course and localized in reactive astrocytes infiltrating white matter lesions. Finally, knocking down TGM6 expression in cultured reactive astrocytes reduced their glial fibrillary acidic protein (GFAP) expression. Conclusion: TGM6-IgG may be a candidate CSF biomarker to predict and monitor disease activity in progressive MS patients. Furthermore, TGM6 expression by reactive astrocytes within both human and mouse lesions suggests its involvement in the mechanisms of glial scar formation.

Funder

The Shubert foundation

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3