Cerebrospinal fluid biomarkers of β-amyloid metabolism in multiple sclerosis

Author:

Augutis Kristin1,Axelsson Markus2,Portelius Erik1,Brinkmalm Gunnar1,Andreasson Ulf1,Gustavsson Mikael K1,Malmeström Clas2,Lycke Jan2,Blennow Kaj1,Zetterberg Henrik1,Mattsson Niklas1

Affiliation:

1. Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden

2. Institute of Neuroscience and Physiology, Department of Neurology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden

Abstract

Background: Amyloid precursor protein (APP) and amyloid β (Aβ) peptides are intensely studied in neuroscience and their cerebrospinal fluid (CSF) measurements may be used to track the metabolic pathways of APP in vivo. Reduced CSF levels of Aβ and soluble APP (sAPP) fragments are reported in inflammatory diseases, including multiple sclerosis (MS); but in MS, the precise pathway of APP metabolism and whether it can be affected by disease-modifying treatments remains unclear. Objective: To characterize the CSF biomarkers of APP degradation in MS, including the effects of disease-modifying therapy. Methods: CSF samples from 87 MS patients (54 relapsing–remitting (RR) MS; 33 secondary progressive (SP) MS and 28 controls were analyzed for sAPP and Aβ peptides by immunoassays, plus a subset of samples was analyzed by immunoprecipitation and mass spectrometry (IP-MS). Patients treated with natalizumab or mitoxantrone were examined at baseline, and after 1–2 years of treatment. Results: CSF sAPP and Aβ peptide levels were reduced in MS patients; but they increased again towards normal, after natalizumab treatment. A multivariate model of IP-MS-measured Aβ species separated the SPMS patients from controls, with RRMS patients having intermediate levels. Conclusions: We confirmed and extended our previous observations of altered CSF sAPP and Aβ peptide levels in MS patients. We found that natalizumab therapy may be able to counteract the altered APP metabolism in MS. The CSF Aβ isoform distribution was found to be distinct in SPMS patients, as compared to the controls.

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3