Protein fibril aggregation on red blood cells: a potential biomarker to distinguish neurodegenerative diseases from healthy aging

Author:

Schneider Thomas Rudolf1ORCID,Stöckli Luisa1,Felbecker Ansgar1,Nirmalraj Peter Niraj2

Affiliation:

1. Department of Neurology, Cantonal Hospital St. Gallen , St. Gallen CH-9007 , Switzerland

2. Transport at Nanoscale Interfaces Laboratory, Swiss Federal Laboratories for Materials Science and Technology , Dübendorf CH-8600 , Switzerland

Abstract

Abstract Neurodegenerative diseases like Alzheimer’s disease are characterized by the accumulation of misfolded proteins into fibrils in the brain. Atomic force microscopy is a nanoscale imaging technique that can be used to resolve and quantify protein aggregates from oligomers to fibrils. Recently, we characterized protein fibrillar aggregates adsorbed on the surface of red blood cells with atomic force microscopy from patients with neurocognitive disorders, suggesting a novel Alzheimer’s disease biomarker. However, the age association of fibril deposits on red blood cells has not yet been studied in detail in healthy adults. Here, we used atomic force microscopy to visualize and quantify fibril coverage on red blood cells in 50 healthy adults and 37 memory clinic patients. Fibrillar protein deposits sporadically appeared in healthy individuals but were much more prevalent in patients with neurodegenerative disease, especially those with Alzheimer’s disease as confirmed by positive CSF amyloid beta 1–42/1–40 ratios. The prevalence of fibrils on the red blood cell surface did not significantly correlate with age in either healthy individuals or Alzheimer’s disease patients. The overlap in fibril prevalence on red blood cells between Alzheimer’s disease and amyloid-negative patients suggests that fibril deposition on red blood cells could occur in various neurodegenerative diseases. Quantifying red blood cell protein fibril morphology and prevalence on red blood cells could serve as a sensitive biomarker for neurodegeneration, distinguishing between healthy individuals and those with neurodegenerative diseases. Future studies that combine atomic force microscopy with immunofluorescence techniques in larger-scale studies could further identify the chemical nature of these fibrils, paving the way for a comprehensive, non-invasive biomarker platform for neurodegenerative diseases.

Funder

Empa-KSSG research grant

Synapsis Foundation-Dementia Research Switzerland

Publisher

Oxford University Press (OUP)

Reference73 articles.

1. Alzheimer’s disease;Masters;Nat Rev Dis Primers,2015

2. Prevalence of dementia and major subtypes in Europe: A collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group;Lobo;Neurology,2000

3. Alzheimer’s disease facts and figures;Alzheimers Dement,2022

4. The amyloid hypothesis of Alzheimer’s disease at 25 years;Selkoe;EMBO Mol Med,2016

5. Neuroinflammation in Alzheimer’s disease;Heneka;Lancet Neurol,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3