Evaluating effects of automation reliability and reliability information on trust, dependence and dual-task performance

Author:

Du Na1,Zhang Qiaoning1,Yang X. Jessie1

Affiliation:

1. Department of Industrial & Operations Engineering University of Michigan, Ann Arbor, MI

Abstract

The use of automated decision aids could reduce human exposure to dangers and enable human workers to perform more challenging tasks. However, automation is problematic when people fail to trust and depend on it appropriately. Existing studies have shown that system design that provides users with likelihood information including automation certainty, reliability, and confidence could facilitate trust- reliability calibration, the correspondence between a person’s trust in the automation and the automation’s capabilities (Lee & Moray, 1994), and improve human–automation task performance (Beller et al., 2013; Wang, Jamieson, & Hollands, 2009; McGuirl & Sarter, 2006). While revealing reliability information has been proposed as a design solution, the concrete effects of such information disclosure still vary (Wang et al., 2009; Fletcher et al., 2017; Walliser et al., 2016). Clear guidelines that would allow display designers to choose the most effective reliability information to facilitate human decision performance and trust calibration do not appear to exist. The present study, therefore, aimed to reconcile existing literature by investigating if and how different methods of calculating reliability information affect their effectiveness at different automation reliability. A human subject experiment was conducted with 60 participants. Each participant performed a compensatory tracking task and a threat detection task simultaneously with the help of an imperfect automated threat detector. The experiment adopted a 2×4 mixed design with two independent variables: automation reliability (68% vs. 90%) as a within- subject factor and reliability information as a between-subjects factor. Reliability information of the automated threat detector was calculated using different methods based on the signal detection theory and conditional probability formula of Bayes’ Theorem (H: hits; CR: correct rejections, FA: false alarms; M: misses): Overall reliability = P (H + CR | H + FA + M + CR). Positive predictive value = P (H | H + FA); negative predictive value = P (CR | CR + M). Hit rate = P (H | H + M), correct rejection rate = P (CR | CR + FA). There was also a control condition where participants were not informed of any reliability information but only told the alerts from the automated threat detector may or may not be correct. The dependent variables of interest were participants’ subjective trust in automation and objective measures of their display-switching behaviors. The results of this study showed that as the automated threat detector became more reliable, participants’ trust in and dependence on the threat detector increased significantly, and their detection performance improved. More importantly, there were significant differences in participants’ trust, dependence and dual-task performance when reliability information was calculated by different methods. Specifically, when overall reliability of the automated threat detector was 90%, revealing positive and negative predictive values of the automation significantly helped participants to calibrate their trust in and dependence on the detector, and led to the shortest reaction time for detection task. However, when overall reliability of the automated threat detector was 68%, positive and negative predictive values didn’t lead to significant difference in participants’ compliance on the detector. In addition, our result demonstrated that the disclosure of hit rate and correct rejection rate or overall reliability didn’t seem to aid human-automation team performance and trust-reliability calibration. An implication of the study is that users should be made aware of system reliability, especially of positive/negative predictive values, to engender appropriate trust in and dependence on the automation. This can be applied to the interface design of automated decision aids. Future studies should examine whether the positive and negative predictive values are still the most effective pieces of information for trust calibration when the criterion of the automated threat detector becomes liberal.

Publisher

SAGE Publications

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3