Inferring Driver Intent: A Case Study in Lane-Change Detection

Author:

Salvucci Dario D.1

Affiliation:

1. Drexel University Philadelphia, PA

Abstract

This paper introduces a robust, real-time system for detecting driver lane changes. Under the framework of a “mind-tracking architecture,” the system simulates a set of possible driver intentions and their resulting behaviors using an approximation of a rigorous and validated model of driver behavior. The system compares these simulations with a driver's actual observed behavior, thus inferring the driver's unobservable intentions. The paper demonstrates how this system can detect a driver's intention to change lanes, achieving an accuracy of 85% with a false alarm rate of 4%; detecting 80% of lane changes within 1/2 second and 90% within 1 second; and detecting 90% before the vehicle moves 1/4 of the lane width laterally — that is, approximately when the vehicle first touches the destination lane line.

Publisher

SAGE Publications

Subject

General Medicine,General Chemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lane-change intention recognition considering oncoming traffic: Novel insights revealed by advances in deep learning;Accident Analysis & Prevention;2024-04

2. Cognitive-Digital-Twin-Based Driving Assistance;IEEE Robotics and Automation Letters;2023-08

3. Prediction-Uncertainty-Aware Threat Detection for ADAS: A Case Study on Lane-Keeping Assistance;IEEE Transactions on Intelligent Vehicles;2023-04

4. Visual Odometry Based Vehicle Lane-changing Detection;2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET);2022-09-13

5. Does LSTM outperform 4DDTW-KNN in lane change identification based on eye gaze data?;Transportation Research Part C: Emerging Technologies;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3