Use of Artificial Intelligence Deep Learning to Determine the Malignant Potential of Pancreatic Cystic Neoplasms With Preoperative Computed Tomography Imaging

Author:

Watson Michael D.1,Lyman William B.1,Passeri Michael J.12,Murphy Keith J.1,Sarantou John P.1,Iannitti David A.1,Martinie John B.1,Vrochides Dionisios1,Baker Erin H.1

Affiliation:

1. Division of HPB Surgery, Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA

2. Department of Surgical Oncology, Valley Health System, Paramus, NJ, USA

Abstract

Background Society consensus guidelines are commonly used to guide management of pancreatic cystic neoplasms (PCNs). However, downsides of these guidelines include unnecessary surgery and missed malignancy. The aim of this study was to use computed tomography (CT)-guided deep learning techniques to predict malignancy of PCNs. Materials and Methods Patients with PCNs who underwent resection were retrospectively reviewed. Axial images of the mucinous cystic neoplasms were collected and based on final pathology were assigned a binary outcome of advanced neoplasia or benign. Advanced neoplasia was defined as adenocarcinoma or intraductal papillary mucinous neoplasm with high-grade dysplasia. A convolutional neural network (CNN) deep learning model was trained on 66% of images, and this trained model was used to test 33% of images. Predictions from the deep learning model were compared to Fukuoka guidelines. Results Twenty-seven patients met the inclusion criteria, with 18 used for training and 9 for model testing. The trained deep learning model correctly predicted 3 of 3 malignant lesions and 5 of 6 benign lesions. Fukuoka guidelines correctly classified 2 of 3 malignant lesions as high risk and 4 of 6 benign lesions as worrisome. Following deep learning model predictions would have avoided 1 missed malignancy and 1 unnecessary operation. Discussion In this pilot study, a deep learning model correctly classified 8 of 9 PCNs and performed better than consensus guidelines. Deep learning can be used to predict malignancy of PCNs; however, further model improvements are necessary before clinical use.

Publisher

SAGE Publications

Subject

General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3