Photonic crystal fiber based automated system to diagnose silent killer

Author:

Sharma Sunil,Tharani Lokesh

Abstract

Pancreatic cancer (PC) is a lethal disease that is difficult to diagnose in its early stages. This is the reason it is deadly known as “The silent killer”. Traditional diagnostic methods are often invasive and can lead to misdiagnosis. The purpose of this manuscript is to propose photonic crystal fibers (PCFs) based artificial intelligence (AI) systems to materialize it as a promising tool for diagnosing pancreatic cancer. PCFs are optical fibers (OFs) that allow for the detection of light at high resolution and used to analyze the biochemical composition of tissues samples and feed the resulting data into an AI algorithm. The proposed system has the potential to significantly improve the early detection and diagnosis of pancreatic cancer, which lead to better outcomes. The Decision Tree (DT) model achieved an accuracy of 86.8%, a sensitivity of 81.6%, and a specificity of 90.3%. The Support Vector Machine (SVM) model achieved an accuracy of 90.9%, a sensitivity of 95.7%, and a specificity of 86.0%. The K-nearest neighbor (KNN) model achieved an accuracy of 90.8%, a sensitivity of 91.7%, and a specificity of 89.1%.

Publisher

MedCrave Group Kft.

Subject

Management Science and Operations Research,Mechanical Engineering,Energy Engineering and Power Technology

Reference14 articles.

1. Artificial intelligence in oncology: current capabilities, future opportunities, and ethical considerations;Shreve;Am Soc Clin Oncol Educ Book,2022

2. Novel neural network to predict locally advanced pancreatic cancer using 4 urinary biomarkers;HY;J Am Coll Surg,2022

3. advances in biomarkers and techniques for pancreatic cancer diagnosis;Wu;Cancer Cell Int,2022

4. Artificial intelligence and imaging for risk prediction of pancreatic cancer: a narrative review;Qureshi;Chin Clin Oncol,2022

5. Vaishnav PK, Sharma S, Sharma P. Analytical review analysis for screening covid-19 disease. International Journal of Modern Research. 2021;1(1):22-29.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3