Analytical Modeling and Numerical Simulation of Forces in an Endoluminal Graft

Author:

Liffman Kurt1,Lawrence-Brown Michael M.D.2,Semmens James B.3,Bui Anh1,Rudman Murray1,Hartley David E.2

Affiliation:

1. Thermal and Fluids Engineering, CSIRO/BCE, Highett, Victoria, Australia

2. Department of Vascular Surgery, Royal Perth Hospital, Perth, Australia

3. Centre for Health Services Research, Department of Public Health, The University of Western Australia, Nedlands, Western Australia, Australia

Abstract

Purpose: To utilize mathematical analysis and computational fluid dynamics (CFD) to investigate the forces acting within the pressurized aorta and upon a stent-graft and how these forces may affect the ongoing performance of the stent-graft. Methods: Analytical force balance analysis and CFD simulations using the Fluent code were used to mimic blood flow through a bifurcated stent-graft in a person at rest. Steadystate blood flow was assumed in which the inlet pressure approximated the mean blood pressure (100 mm Hg) and the blood flow velocity was an approximation of the peak systolic flow rate (0.6 m/s). Two sizes of endoluminal grafts were analyzed: the larger graft had an inlet diameter of 3 cm and outlet diameters of 1 cm; the smaller graft diameters measured 2.4 cm proximally and 1.2 cm distally. The endografts were studied in 2 configurations: with the limbs straight and with one bent. Results: For the larger graft model, the normal peak blood flow induced a downward force of 7 to 9 N on the bifurcated grafts. Bending one of the limbs of the graft produced a sideways force of 1.3 N. For the smaller endograft, the downward force was in the range of 3.1 to 5.1 N and the sideways force on a curved limb was ∼1.5 N. The magnitude of the forces given by the analytical formulae and the CFD results agreed to within 2 significant figures. Conclusions: These results suggest that the downward force on a bifurcated stent-graft, which may exceed the force required to dislodge it when relying on radial attachment alone, is determined mostly by the proximal graft diameter. Curvature of the graft limbs creates an additional sideways force that works to displace the distal limbs of the graft from the iliac arteries.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,Surgery

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3