Biomechanical and Functional Behavior of Implants

Author:

Stanford Clark M.1

Affiliation:

1. Dows Institute for Dental Research College of Dentistry University of Iowa Iowa City, Iowa 52242, USA

Abstract

The ability to achieve a long-term stable implant interface is not a significant clinical issue when sufficient uni- or bi-cortical stabilization is available. Clinical outcomes studies suggest that the higher-risk implants are those placed in compromised cortical bone (thin, porous, etc.) in anatomic sites with minimal existing trabecular bone (characterized as type IV bone). In establishing and maintaining an implant interface in such an environment, one needs to consider the impact of masticatory forces. These forces, in turn, have the potential to create localized changes in interfacial stiffness through the viscoelastic properties of bone. Changes in these properties will alter the communication between osteocytes and osteoblasts, leading to an increase in new bone growth, a maintenance of established bone, or a loss (potentially catastrophic) of either cortical or trabecular bone. Therefore, a key to understanding the biomechanical and functional behavior at an implant interface is to control the extent of anticipated modeling and remodeling behavior through an optimal implant design combined with a thorough understanding of how tissues respond to the mechanically active environment.

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3